REVIEW

Can We Lower the Burden of Antimicrobial Resistance (AMR) in Heavily Immunocompromised Patients? A Narrative Review and Call to Action

 $Matteo~Bassetti \\ \hbox{$^{!\!\!D}$} \cdot Antonella~Cardone \cdot Fatima~Cardoso \cdot Vanessa~Carter \cdot Oliver~A.~Cornely \cdot Marco~Falcone \cdot Cardone \cdot C$

Daniel Gallego · Maddalena Giannella · Paolo Antonio Grossi · Livio Pagano · Nicola Silvestris ·

Nikolaos V. Sipsas · Alex Soriano · Mario Tumbarello · Pierluigi Viale

Received: May 16, 2025 / Accepted: July 17, 2025 © The Author(s) 2025

ABSTRACT

Effective antibiotics are a cornerstone of treatment for heavily immunocompromised patients such as those undergoing cancer treatment or transplantation procedures, as these patients

Prior Presentation: Elements of the content, specifically detail present in the Methods, were included in a poster presented at the 9th AMR Conference, held on 25–26 February 2025. The current manuscript presents an expanded and original analysis that has not been published or publicly disseminated in full.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s40121-025-01204-4.

M. Bassetti (⊠)

San Martino University Hospital, Largo Rosanna Benzi, 10, 16132 Genoa, Italy

e-mail: Matteo.Bassetti@hsanmartino.it

A. Cardone

Cancer Patients Europe, Brussels, Belgium

F. Cardoso

The ABC Global Alliance, Lisbon, Portugal

V. Carter

AMR Narrative, Cheshire, UK

O. A. Cornely

University of Cologne, Cologne, Germany

M. Falcone

University of Pisa, Pisa, Italy

are at particularly high risk of adverse outcomes from infections. However, rising antimicrobial resistance (AMR) threatens to undermine our ability to deliver modern treatments, and without action, recent advances in clinical care may be undone. In this narrative review, we examine the broad burdens of AMR for patients and healthcare systems, including excess mortality, underlying disease outcomes, economic costs and the damage to patients' quality of life. Despite the profound impact on individual wellbeing, the patient voice and patient-reported experience measures are largely absent from current research. To protect the everyday benefits of antibiotics, it is vital to educate all those involved in patient care on how we can combat AMR, including appropriate testing, use of

D. Gallego

European Kidney Patients' Federation, Madrid, Spain

M. Giannella · P. Viale

IRCCS Policlinico S. Orsola - University of Bologna, Bologna, Italy

P. A. Grossi

Università degli Studi dell'Insubria, Varese, Italy

L. Pagano

Catholic University of Sacred Heart, Rome, Italy

N. Silvestris

IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy

effective antibiotics and infection control procedures. Moreover, given the high investment in novel anticancer treatments, good antimicrobial stewardship has the potential to deliver overall cost savings to healthcare systems while ensuring that patients can safely access and benefit from these therapies.

PLAIN LANGUAGE SUMMARY

Antibiotics are essential for people with serious health conditions like cancer or those who have received an organ transplant. These patients have weakened immune systems and are more likely to develop infections: however, antimicrobial resistance (AMR), where bacteria no longer respond to antibiotics, is making these infections harder to treat. This review looked at the impact of AMR in heavily immunocompromised patients. It found that resistant infections are common and can cause delays to cancer treatment, longer hospital stays and a higher risk of death. These infections can also reduce quality of life and increase healthcare costs. The review found that current efforts to manage AMR are inconsistent. There is a need for faster diagnostic testing, better education for healthcare providers and patients, and more consistent use of infection control and antibiotic stewardship programmes. These steps could help optimise the treatment of resistant bacteria and improve outcomes. As treatments like chemotherapy and organ transplantation are very costly, preventing infections and early mortality through better AMR management could also help reduce overall healthcare spending. The review highlights the importance of improving awareness, strengthening hospital systems and investing in new antibiotics so that patients continue to benefit from modern medical treatments.

N. V. Sipsas National and Kapodistrian University of Athens, Athens, Greece

A. Soriano Hospital Clínic de Barcelona, Barcelona, Spain M. Tumbarello University of Siena, Siena, Italy **Keywords:** Antimicrobial resistance; Cancer; Haematological; Immunocompromised; Multidrug resistance; Transplant

Key Summary Points

Heavily immunocompromised patients, such as those with solid cancers, haematological malignancies and solid-organ transplant recipients, face a heightened risk from antimicrobial resistance (AMR), which significantly complicates treatment, delays recovery and increases the likelihood of adverse outcomes.

The direct and indirect economic burdens of AMR in these populations add substantial strain to healthcare systems already managing the high costs of underlying disease treatment.

There are critical gaps in research and interventions, including inconsistent stewardship approaches, limited use of rapid diagnostics and a lack of targeted prophylaxis strategies, which contribute to suboptimal patient care and missed opportunities for earlier and more effective intervention.

Tackling these challenges requires better recognition of the burdens faced by patients who suffer lasting impacts from AMR infections, as well as enhanced antimicrobial stewardship and education for healthcare providers and patients to optimise care and combat AMR effectively. Moreover, stronger investment is essential to revitalise the antibiotic development pipeline, which remains fragile as a result of limited commercial viability, thereby supporting earlier access to appropriate treatment and improving outcomes for vulnerable patient groups.

INTRODUCTION

Antimicrobial resistance (AMR) is a growing threat to global health security. In 2021, AMR was associated with 4.7 million deaths,

with 1.1 million deaths directly attributable to bacterial resistant infections [1]—six bacterial pathogens were responsible for more than 80% of these deaths: *Staphylococcus aureus, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Streptococcus pneumoniae* and *Pseudomonas aeruginosa* [1]. By 2050, deaths associated with AMR could reach 8.2 million per year [1], with an associated loss of up to 3.8% of global gross domestic product—equivalent to 6.1 trillion USD per year [2].

Bacteria are constantly evolving to counteract available antibiotics, including hydrolysis, genetic mutation of binding sites and preventing accumulation of antibiotics within the cell [3]. Despite the growing threat of AMR, the development pipeline for new antibiotics to overcome resistance remains challenging; of the 32 traditional antibiotics currently under development against the World Health Organization (WHO) bacterial priority pathogens, only two meet all four WHO innovation criteria [4, 5].

Patients with cancer and transplant recipients are at particular risk from bacterial infections because of their immunocompromised status, frequent hospitalisations, need to undergo invasive procedures, prior use of broad-spectrum antibiotics and the necessity for prophylactic antibiotics [6-8]. Compared with the general US population, patients with cancer are nearly three times more likely to die from infection [9], and in a UK survey of 100 oncologists, almost half (46.0%) were concerned chemotherapy may soon become unviable as a result of the rise of AMR [10]. In the case of solid-organ transplant (SOT), the challenge of managing AMR infections can act as a relative contraindication in certain patients, depending on their other comorbidities, because of the high burden of infectious complications [7, 11].

The aim of this narrative review is to explore recent publications about the burdens faced by heavily immunocompromised patients and healthcare systems from bacterial AMR, particularly underexplored issues around treatment delays and patient experience, and issue a call to action for us as an infectious disease community to do more to recognise and improve outcomes from infectious complications.

METHODS

We conducted a keyword search using PubMed for publications from a 5-year period (November 2018–2023) reporting burdens from AMR bacterial infections, including mortality, underlying disease outcome (e.g. treatment delays) and patient quality of life, from English language publications from Europe and North America. The regional focus was chosen to improve consistency in testing and reporting methodologies in identified publications. Our search focused on bacterial infections (excluding fungi and viral infections) to manage the scale of our review; moreover, the unique challenges in treating fungal infections due the similarities between eukaryotic and fungal cells were beyond our scope [12]. Search terms and selection criteria are available in the Supplementary Material.

Ethical Approval

This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors. No new data were generated.

RESULTS

Results of the search (Fig. 1) were considered at a virtual steering committee meeting. Additional publications that were considered relevant were included on the basis of the experience of the authors. Most studies identified in the literature reported retrospective cohort data (n=113), with the next most common being prospective cohorts (n=35). Given the potential for reporting bias in observational studies, the findings reported herein should be interpreted in this context. Moreover, the patterns of AMR detected also depend on the local epidemiology as well as the extent and methods of testing employed.

Epidemiology of AMR and Its Mortality

The frequency of AMR in cancer and transplant patients with bacterial infections is approximately 10–30% globally [13–21]; this rate is

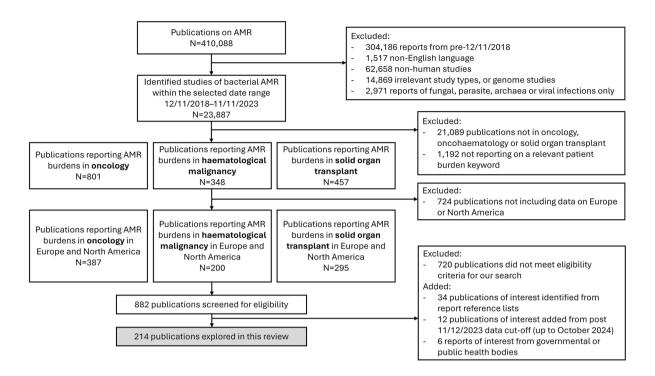


Fig. 1 Literature identification: flow chart of results identified and screened. AMR antimicrobial resistance

consistent with previous estimates for these immunocompromised populations, who have frequent contact with the healthcare system [8, 22–29]. The reported frequency of AMR varies widely by disease and geography, with resistance patterns closely correlated with prior type and duration of antibiotic prophylaxis [22, 30–33]. Of particular concern, some centres have reported zero susceptibility to common β -lactams and fluoroquinolones used as prophylaxis, highlighting the increasing threat of AMR for these patient populations [34, 35].

Concerningly, most of the studies identified reported multidrug resistance—a subset of AMR where bacteria are resistant to at least one agent in three or more antibiotic classes—with detected frequencies ranging from less than 1% to as high as 73.8% of bacterial samples tested (Table 1) [13–21, 31, 34–143]. Of note, while not explicitly explored as part of our search, resistant bacterial infection can often co-occur with invasive fungal infection, which can complicate management and worsen outcomes [33, 77, 144, 145].

The impact of AMR on mortality was similarly varied by population and disease type, with 30-day mortality ranging from 3.0% to 64.6% [13, 15, 17, 30, 31, 34–38, 41, 42, 45–50, 53, 55, 57, 60, 63, 64, 68, 69, 81, 84, 90, 93, 94, 97, 98, 102, 104, 107, 109, 111, 121, 126–129, 136, 145–154] and from 8.7% to 75.0% for timepoints beyond 1 year [13, 43, 48, 49, 102, 105, 126, 127, 147, 150, 153, 154]. Differences in AMR frequency and associated mortality across populations may reflect variations in underlying disease types, treatment intensity, patient comorbidities and the ability to tolerate or access specific antimicrobial regimens [44, 84, 105, 155–157].

Inappropriate empiric antibiotic therapy (IEAT)—antibiotic treatment that is ineffective against the infecting pathogen—is a key factor contributing to AMR-associated mortality and is one of the few modifiable risk factors [18, 20, 25, 30, 60, 63, 84, 89, 114, 148, 158]. Reported rates of IEAT at 16.8–68.6% highlight the growing threat of AMR in immunocompromised patients [18–20, 30, 40, 52, 60, 62, 84, 86, 89, 90, 99, 114,

Table 1 Summary of findings for each disease area explored

	Solid cancer	Haematological malignancy	Solid-organ transplant
Frequency of AMR	0.6–71.7% [44, 101]	1.7–52.3% [16, 126]	0-73.8% [93, 132]
30-day mortality Comments	29.5–43.0% [36, 64] Highest frequency of AMR reported in CCA (71.7%) [101] Lowest in pre-surgery patients with gynaecological cancer (0.6%) [44]	6.1–50.0% [45, 128] Highest frequency of AMR reported in paediatric HSCT recipients (52.3%) [126] However, paediatric patients had the lowest overall mortality rate (0–8.7%) [75, 126]	3.9–50% [104, 151] Highest frequency of AMR reported in intestinal and liver transplant recipients Multidrug-resistant cultures were reported in 3.4–14.0% [39, 70] of donors Mortality with AMR was generally lowest for kidney transplant recipients (8.6–22.0% [80, 154]); whereas mortality was typically highest in liver transplant recipients [104], especially those who developed CRE infection [27, 136]

AMR antimicrobial resistance, CCA cholangiocarcinoma, CRE carbapenem-resistant Enterobacteriaceae, HSCT haematopoietic stem cell transplant

124, 133, 134, 148, 159]. In line with this finding, consistently poor outcomes were reported with carbapenem-resistant bacteria, likely due to the limited management options available for these pathogens [17, 18, 32, 35, 36, 43, 47–49, 53, 69, 81, 85, 91, 97, 98, 105, 110, 124, 145, 150, 152, 153, 160, 161].

Solid Tumours

The prevalence of AMR in patients with solid cancers was lowest for pre-surgery patients with gynaecological cancer: 0.6% had methicillin-resistant *S. aureus* (MRSA) [44]. The highest frequency of infections due to resistant bacterial pathogens in studies of solid tumours was reported in cholangiocarcinoma (CCA). One study found that 71.7% of patients undergoing resection of extrahepatic CCA had resistant bacterial infections, accounting for 84.5% of all microbiologic growth from common hepatic duct samples [101]. Two other studies of CCA reported postoperative AMR frequencies of

31.2% and 32.0% [107, 111], while AMR infections were identified in 29.2% of bile samples from patients with ductal adenocarcinoma after pancreatoduodenectomy [105]. The frequency of AMR, particularly in Gram-negative bacteria (GNB), is on the rise [134]. Despite this, there is a lack of involvement of infectious disease specialists—a Spanish study of pneumonia in patients with cancer reported that only 26.0% of cases were evaluated by an infectious disease specialist [155].

Infection remains a leading cause of death for patients with solid tumours [8], with worse overall survival reported for AMR versus no AMR. Notably, for patients with solid tumours this mortality deficit was present for both patients with active infection [101, 105] as well as those colonised with AMR bacteria, possibly as a result of their risk of developing a later infection with the same resistant pathogen [84, 94, 107, 111]. Median overall survival in AMR-colonised patients was just 6.0–17.0 months compared with 23.9–50.0 months for non-colonised patients with cancer [84, 94, 111]. Mortality

estimates for patients with AMR vary widely. A 90-day mortality rate of 8.3% was observed in those with perioperative biliary cultures positive for multidrug-resistant organisms, compared with 0% in those with negative cultures, following surgery for perihilar CCA [107]. In another study, patients colonised with AMR who underwent surgical resection for CCA had a mortality rate of 55.6% compared with 17.4% in those without AMR. Of those with AMR, 30.0% of deaths were attributed to infection-related causes—an equal proportion to those attributed to cancer-related causes [111].

It has previously been suggested that the contribution of infections to cancer deaths may be underreported on death certificates [8], and this may be due to the difficulty in determining the cause of death in patients who have several comorbidities. Although patients' performance status and disease severity are key predictors of mortality [84, 155], a Spanish study highlighted that only 41.0% of patients with cancer who died within 30 days of pneumonia diagnosis at their centre were terminally ill [155]. Moreover, infection is a common reason for patients with cancer to be admitted to hospital, highlighting the key role of infections in the trajectory of negative outcomes [156, 157].

Importantly, the impact of AMR extends beyond infection-related mortality—two studies reported up to 30.0% of patients with infections experienced delays or non-compliance with adjuvant chemo-, radio- or immunotherapy [44, 105], and nosocomial infection was associated with greater tumour volume in a single study of brain cancer [162]; however, there are insufficient data to confirm the ultimate impact of treatment delays due to infections on long-term disease control and cancer survivorship.

Haematological Malignancies

Studies of haematological malignancies reported AMR positivity in 1.7–52.3% of cases, often in the context of bloodstream infections (BSIs) [13, 15, 16, 18, 19, 31, 35, 37, 38, 41, 43, 45, 46, 50, 52, 55, 58, 60, 63, 73, 74, 79, 87–92, 95, 97, 98, 103, 112, 114, 119, 120, 122, 125, 128, 130, 138–140, 163, 164]. Resistant infections

were most commonly reported in southern/eastern Europe (Czechia, Greece, Italy, Poland and Spain): 7.5–52.3% [16, 31, 35, 50, 52, 55, 60, 63, 75, 77, 88–90, 92, 95, 97, 98, 103, 112, 114, 120, 125, 126, 128, 130, 138] compared with 2.9–19.2% in northwestern Europe (Germany, Finland, France and the UK) [41, 46, 74, 87, 91, 119, 139].

Expectedly, survival is very poor in these patients, with a 30-day mortality of 6.1–50.0%, rising to as high as 74.0% at 1 year [13, 15, 30, 31, 35, 46, 60, 63, 90, 98, 128, 129, 142, 152], and AMR bacteria are associated with higher rates of septic shock and infection-related mortality than in non-AMR BSIs [98]. Those patients who develop AMR BSIs, particularly from GNB, were shown to have a 2–5-fold elevated risk of death versus patients with non-AMR BSIs [13, 31, 43, 77, 89]. Alarmingly, the rates of AMR-GNB reported in onco-haematological BSIs appear to be rising with time [15, 60, 90].

As might be expected, mortality rates were more favourable for AMR infection in paediatric cancer cases, ranging between 0 and 8.7%, with complications often occurring within the context of graft-versus-host disease (GvHD) [50, 55, 126, 160]. While infections and infectionrelated mortality in haematological malignancy are commonly associated with GvHD [35, 37, 50, 55, 58, 92, 126, 160], especially in patients with high antibiotic exposure [92, 165], whether AMR directly influences the incidence of GvHD is unclear [13, 38, 92, 122]; however, at least in paediatric patients, it has been suggested that different types of antibiotic prophylaxis may exacerbate or be protective against GvHD, with gentamicin contributing to decreased rates of acute GvHD, while ciprofloxacin and colistin may increase GvHD risk after allogeneic HSCT [92, 165]. Whether AMR is correlated or causative in this context is unclear; however, the presence of AMR nonetheless complicates infection management.

Patients with haematological malignancies also suffer high rates of catheter/port removal for infection source control, which has been reported to occur prior to the completion of chemotherapy in up to 31.0% of cases [75], leading to treatment non-compliance and hampering control of underlying disease [97]. While

there may be a relationship between complete remission and favourable infection resolution [98, 166], there are insufficient data available to confirm this.

SOT Recipients

The frequency of AMR was highly variable in SOT recipients. AMR was reported post transplantation at rates up to 73.8% [21, 34, 49, 56, 61, 62, 66, 71, 72, 76, 82, 86, 93, 96, 104, 110, 117, 118, 121, 124, 136, 137], with similar occurrence across liver (9.3-60.0%) [17, 47, 48, 54, 57, 65, 68, 85, 102, 106], kidney (6.2–63.0%) [59, 69, 80, 108, 115, 127, 131] and lung transplantation (0-60.7%) [14, 51, 109, 132, 135]; 30-day mortality for transplant recipients ranged from 4.0% to 50.0% [34, 68, 93, 104, 109, 121, 146, 148, 151], rising to 13.0-64.0% up to and beyond 1 year, with the highest mortality rates in those developing carbapenem-resistant Enterobacterales (CRE) infection [17, 48, 49, 66, 102, 147, 150, 153].

While most studies reported statistically worse mortality with AMR bacteria [47–49, 54, 57, 85, 102, 109, 110, 146, 147, 151, 153, 154, 160], others reported no difference [65, 66, 80, 93, 96, 104, 121], perhaps owing to improvements in modern screening practices, although the worst outcomes typically presented in those with multidrug-resistant infection [66, 80, 104]. Two meta-analyses using available data have reported a greater than twofold risk of death within 1 year for SOT recipients with AMR colonisation versus non-colonised patients [153], increasing to fourfold for SOT recipients with infections caused by carbapenem-resistant GNB [160].

In line with previous reports [27, 167], liver transplant was consistently associated with high mortality from AMR (13.0–58.0%) [17, 47, 48, 54, 57, 65, 68, 85, 102, 146, 168], while mortality in kidney recipients was generally more moderate (8.6–22.0%) [69, 80, 154]. Reported raw mortality in lung transplant was also high (16.0–50.0%), although this was often complicated by the presence of other comorbidities such as cystic fibrosis [109, 147, 151].

The development of infectious complications was also more often associated with delayed or

loss of graft function [110, 115, 131, 137, 154, 169, 170], with rates up to 35.0% for infections involving extended-spectrum β -lactamase-producing (ESBL) GNB [154] or CRE [110], although this did not appear to be the case for AMR colonisation only [59, 100, 153].

An important source of infection in SOT is the donor organ. AMR cultures were reported in 3.4–14.0% of donors [39, 53, 70, 100, 136], and this can lead to donor-derived infection (DDI) with the same pathogen in recipients [27, 53, 100, 109, 136], although it has been suggested that, at least for the liver, transplantation from a live donor may reduce the risk of CRE transmission [110].

While appropriate screening appears to have had a positive impact on transmission rates [39, 53], lack of knowledge of the donor's microbiological status increases the risk of infection [70] and the presence of resistant pathogens in donors can go undetected as a result of them being asymptomatic carriers [169].

There is a need to optimise protocols in order to maximise the number of organs available [136]; however, clinicians are understandably cautious about the risks of DDI, and colonisation with AMR-GNB leads to lower organ utilisation [70]. While AMR colonisation does not necessarily lead to graft loss or mortality [100], the use of such organs remains controversial [70].

DISCUSSION

Consequences for Patients

The wide variability in reported AMR rates across studies reflects differences in patient populations, study designs, and local epidemiology and microbiological practices, which limits the comparability of findings and underscores the need for more consistent, standardised approaches to testing and reporting. As noted in a recent review, the limited data on optimal use and interpretation of diagnostic tools in SOT recipients further constrains the ability to assess clinical associations in this population [28].

Notably, several case reports highlighted the significant burdens arising from AMR for heavily immunocompromised patients, including social isolation, invasive surgical revisions and, in extreme cases, amputation, which all degrade a patient's long-term quality of life [166, 171, 172]. Despite the large body of evidence reporting on the clinical outcomes of AMR in oncology and transplant, we found no controlled studies exploring patient-reported experience measures, and a lack of data on real-world outcomes of antibiotic stewardship programmes. This highlights a significant limitation and the need for future studies to collect and report these data as a priority to understand patients' perspectives in more detail.

Several case studies highlighted the significant impacts of invasive AMR infection management procedures, including surgical revisions [131] or debridement, which can require skin grafting post intervention [166, 171, 172]. Two case reports of patients with leukaemia also highlighted the extreme case of amputation—a significant lasting impact of their infection with AMR *P. aeruginosa*—despite both patients otherwise successfully achieving a complete response for their underlying cancer [172].

Central venous catheter (CVC) infections are also a significant concern in oncology patients, often necessitating catheter removal [75]. This can complicate the administration of treatments like chemotherapy, which may then require peripheral intravenous (IV) access [75, 173]. As peripheral IV administration is associated with risks such as phlebitis and eventual obliteration of peripheral veins, potentially leading to long-term vascular damage, CVC infections can lead to delays or noncompliance with treatment regimens, reducing the quality of care for patients [75].

There is a need for future initiatives to improve communication and health literacy around the risks of AMR to patients; indeed, one study in paediatric kidney transplant recipients highlighted the potential for patient education to help minimise the frequency of infections where patients are required to self-catheterise [59].

Psychological and Social Impacts of AMR

Beyond clinical consequences, AMR can have lasting psychological and social effects, including long periods of isolation, anxiety and disruption to family life. Patients who develop resistant infections are also often admitted to the hospital intensive care unit (ICU), which brings additional burdens such as invasive mechanical ventilation [166, 171, 172, 174-176]. During their recovery, a prolonged period of social isolation is often required to prevent the wider spread of the pathogen as well as protect them from further infection—this places a significant burden on patients who must go through substantial periods of time without contact with relatives and close social connections [166, 172, 177].

Patients may also experience the burden of social isolation outside of the ICU. In a survey of patients with leukaemia, many reported avoiding social contact because of the fear of catching a potentially life-threatening infection, which negatively impacted their quality of life [178]. While this suggests patients are aware of everyday dangers of infection, it is unclear how aware immunocompromised patients are of the specific dangers of AMR, which is especially relevant to them given their frequent hospital contact and antibiotic use.

Clinical Management Practices

Against the background of AMR, many standard prophylactic regimens could be considered inadequate, particularly in oncology [38, 122, 179]. It is important for antibiotic treatment to be tailored to the local epidemiology [24], and in the case of SOT, risk assessment tools such as INCREMENT may also support clinicians in their initial choice of empiric antibiotic therapy [17, 21, 148]. Importantly, even patients scored at low risk of infection may benefit from targeted therapy in areas with high prevalence of certain types of resistance [180], for example, European countries where the frequency of carbapenem resistance is higher than the regional average, such as Greece, Italy, Spain, Poland, Portugal

and Turkey [28, 181]. Although CRE carriage is strongly associated with infection risk, its predictive value can be further refined using clinical risk prediction models, such as the CRECOOLT score developed for liver transplant recipients, to better stratify patients and optimise preventive and therapeutic strategies [17].

While the optimal course of management is not necessarily always clear because of a lack of high-quality evidence [24, 182–184], knowledge of the microbiological status of patients and organ donors is consistently linked with favourable outcomes [39, 53, 81, 185]. Despite this, screening and reporting practices are not standardised [27, 28]; however, the emergence of rapid diagnostic tests for AMR provides an opportunity to ensure clinicians have access to timely microbiology results [179, 186, 187]. Not all hospitals have access to 24-h microbiology labs or rapid antimicrobial susceptibility testing, and achieving equity of facilities access will be a key step in improving AMR screening [42].

A key part of maintaining the effectiveness of existing antibiotics is appropriate stewardship, including avoiding their use for probable viral infections to prevent unnecessary contributions to AMR [188]. Prolonged use of antibiotics exacerbates AMR trends [189]. Although controversial in febrile neutropenia [190], short-duration, broad-spectrum antibiotic therapy with prompt de-escalation of duration of therapy has been shown non-inferior to alternative protocols [25, 30, 140]. Such interventions are relatively simple to implement and can reduce the selective pressures that drive and maintain AMR.

Direct and Indirect Costs of AMR

Development of an AMR infection adds significantly to healthcare costs, primarily as a result of extended durations of hospital stay and ICU/ventilator utilisation [22, 160]. The presence of an AMR infection can extend hospital stay by up to 30 days longer versus no AMR [14, 22, 37, 44, 47, 48, 53, 54, 56, 57, 65, 68, 69, 80, 84, 86, 93, 97, 104, 109, 121, 124, 129, 142, 146, 147, 156, 159, 162, 191], increasing the cost of management similar to other infections such as *Clostridioides difficile*, which

can add over 50,000 USD to direct healthcare costs [22]. These costs may be even higher for hospital-onset AMR *P. aeruginosa*, up to 208,836 USD [192].

Other contributors to direct costs include the potential for surgical revisions [62, 101, 116, 131, 156, 171] and catheter/central line replacement [42, 60, 90, 98, 99, 149, 171, 193]. Central line-associated bloodstream infection (CLABSI) has been reported to incur direct costs of approximately 8810 EUR [191].

The requirement for targeted antibiotics also adds to the cost of managing resistant infections. The direct cost of targeted empiric therapy against vancomycin-resistant enterococci (VRE) was estimated at 1604–27,000 USD [22, 194], and 8542–31,811 USD for therapy against carbapenem-resistant *P. aeruginosa*, both versus susceptible strains in high-risk oncology and transplant patients in US hospitals [160]. These figures are similar to the 31,338 USD cost per BSI due to MRSA in the general US hospital population [195].

In contrast, the costs of managing an immunocompromised patient's underlying disease can vastly outstrip the costs of infection management. Cancer treatment in the USA can total a cumulative cost of 77,339–225,270 USD per patient over 23 months post diagnosis for colorectal, lung and female breast cancer [196], while costs associated with haematological malignancy range from 458,490 USD to as high as 731,682 USD for chimeric antigen receptor T cell (CAR T) therapy [197], and can reach a total of approximately 1,071,700 USD in the case of allogeneic HSCT [198]. Similar ranges are seen in SOT, with costs ranging from 408,800 USD (pancreas) to 1,664,800 USD (heart) [198].

The wide disparity in costs between infection management versus the price of treatment for underlying diseases means that greater investment in infection control and management with testing and targeted therapies has the potential to deliver cost savings to the healthcare system. Moreover, implementation of appropriate antimicrobial stewardship programmes was shown to deliver overall cost savings of 732 USD per patient in a recent meta-analysis [199]. There is a need for a cost model in immunocompromised patients to comprehensively evaluate the direct

impact of appropriate versus inappropriate management of infections.

Indirect costs are less well understood, as there are limited data on the broader impacts AMR infections have on the lives of patients such as their ability to work. In addition, AMR infections can result in treatment delays for the underlying condition, leading to worse outcomes, including higher mortality rates [200]. The World Bank has estimated that in the general population indirect costs could rise in line with the growing presence of AMR, potentially reaching up to 3.8% of global gross domestic product by 2050, equivalent to 6.1 trillion USD, as a result of the indirect loss of economic output [2].

There is also an indirect cost of infections on hospital efficiency due to impacts on logistics. While data on this topic are limited, many clinicians will be acutely aware of how, from their recent personal experience of the COVID pandemic, infection management can impact broader hospital resource efficiency [201, 202].

There is an unmet need for comprehensive cost-effectiveness analyses within the context of vulnerable patient populations who are at high risk of infection-related morbidity and mortality to provide a complete picture for policy makers. Future cost-analyses may consider exploring the far-reaching impacts of AMR infection on the cost-effectiveness of underlying disease management as well as societal participation. This may also support implementation of incentive mechanisms to increase investment in the development of new antibiotic agents [4, 5, 203].

CONCLUSION

AMR is a growing societal problem, placing additional stresses on healthcare resources as well as significant burdens on patients, including treatment delays, invasive management and social isolation, as well as potential long-term reductions in quality of life. In the case of cancer and transplant, the high cost of underlying disease treatment means that effective management of infections has the potential to deliver cost

savings for healthcare systems while improving patient outcomes and quality of life.

To address these challenges, there is a need for greater education of clinicians working in and across oncology and transplant, including physicians, nurses and pharmacists, to support the use of appropriate antibiotics tailored to the patient and local microbiology. This includes promoting the use of rapid diagnostic tools to enable timely identification of pathogens and resistance patterns, as well as implementing screening protocols to detect and stratify patients at high risk. Education on the need for effective stewardship programmes is equally important to limit the rise of AMR and maintain the effectiveness of our current antibiotic therapies.

Patients should be assessed and reassessed for AMR pathogens, even if known to the admitting centre, to appropriately fine-tune the type and duration of antibiotic treatment. These patients must also be supported by initiatives to ensure equity of access not just to novel antibiotics but also hospital screening and laboratory facilities. Efforts to improve AMR outcomes must reflect the lived experience and priorities of immunocompromised patients, for whom delays, inadequate treatment options or poor access can have life-altering consequences. Integrating the patient voice into AMR policy, stewardship design and care planning is essential to ensure that solutions are grounded in what matters most to patients, such as timely, effective and accessible treatment. Education is also imperative for patients at high risk of resistant infections to empower them to promptly report symptoms to their healthcare providers and enhance their self-care capabilities. This education should extend to hospital measures to improve infection control and maintain good antimicrobial and testing stewardship.

Finally, there is a pressing need to strengthen the antibiotic development pipeline, which remains fragile and underfunded, posing a risk to future health security and the progress of modern medicine [4, 5]. Appropriate financial incentives should be put in place to ensure the antibiotics of the future are available when needed. Addressing this challenge requires not only innovation and investment in antibiotic research and development but also the

implementation of effective stewardship programmes to ensure antibiotics are used appropriately and efficiently. A coordinated approach is essential to protect future health security and preserve the benefits of effective antibiotic treatments for patients with cancer and transplant, who are among the most vulnerable and who depend on these therapies to safely receive lifesaving care.

CALL TO ACTION: SAFEGUARDING CANCER AND TRANSPLANT CARE FROM AMR

There is increasing recognition of the need for coordinated strategies to address AMR in cancer and transplant care. Structural factors, such as racism and socioeconomic inequalities, contribute to disparities in AMR infection rates, antimicrobial prescribing patterns and access to preventive interventions, particularly in minority populations [204]. Transportation inequities, limited internet access and restrictions on who can prescribe treatments contribute to disparities

in access to essential therapeutics, highlighting the need to remove structural barriers to care for high-risk populations [205]. As a result of this review, Cancer Patients Europe is working on a white paper that will be calling for stronger action to protect vulnerable patients through improved surveillance, better access to treatment and stronger policy commitments (Cancer Patients Europe, written communication, 4 July 2025).

We propose that the following actions should be prioritised (Fig. 2):

- Recognise AMR as a barrier to safe and equitable cancer and transplant care, and incorporate it into national cancer plans, transplant guidelines and critical medicines policies.
- Embed AMR surveillance systems that collect cancer-specific and transplant-specific data, including information on treatment delays, infection outcomes and mortality.
- Boost the development of new antibiotics and establish access mechanisms to ensure that these treatments are available to highrisk patients in all healthcare settings.

RECOGNISE

AMR as a barrier to safe and equitable cancer and transplant care in national plans and policies

EMBED

AMR surveillance that includes cancer-specific and transplant-specific data on infections and treatment delays

POOST

development and access to new antibiotics for high-risk patients across healthcare settings

ENSURE

equitable access to antibiotics and infectionrelated healthcare for vulnerable patient groups

INVEST

in rapid diagnostics and stewardship programmes to improve outcomes and prevent misuse of antibiotics

INVOLVE

patients in AMR policy, research and care decisions to reflect their needs and experiences

FOSTER

collaboration between infectious disease experts, oncologists, transplant teams and patient organisations

Fig. 2 Priority actions to address AMR in cancer and transplant care. AMR antimicrobial resistance

- Ensure equitable access to antibiotics and infection-related healthcare services by implementing targeted access strategies tailored to high-risk patient groups.
- Invest in rapid diagnostic testing and antimicrobial stewardship programmes within oncology and transplant services to improve patient outcomes and reduce unnecessary antibiotic use.
- Involve patients in AMR policymaking, research and healthcare planning to ensure their experiences and needs inform decisionmaking and care delivery.
- Foster stronger collaborations between infectious disease specialists, oncologists, transplant clinicians and patient organisations to coordinate care pathways and drive sustained action on AMR.

These actions are essential to protect the safety and wellbeing of patients with cancer and transplant and to maintain access to effective, life-saving treatments.

ACKNOWLEDGEMENTS

All authors in this manuscript make up the I'AMR (I am AMR) Immunocompromised AMR working group.

Medical Writing, Editorial and Other Assistance. Medical writing support, under the direction of the authors, was provided by Marc Exton-McGuinness, Rebecca Anderson and Maria Kouimtzi of NexGen Healthcare Communications (London, UK) and funded by Menarini.

Author Contributions. Matteo Bassetti, Antonella Cardone, Vanessa Carter, Oliver A. Cornely, Marco Falcone, Daniel Gallego, Maddalena Giannella, Paolo Antonio Grossi, Livio Pagano, Nikolaos V. Sipsas, Alex Soriano, Mario Tumbarello and Pierluigi Viale conceived and initiated the review. Literature searches were conducted prior to the I'AMR working group involvement, and all authors on the steering committee (Vanessa Carter, Oliver

A. Cornely, Marco Falcone, Daniel Gallego, Maddalena Giannella, Paolo Antonio Grossi, Livio Pagano, Nikolaos V. Sipsas, Alex Soriano and Mario Tumbarello) as well as Matteo Bassetti, Pierluigi Viale and Fatima Cardoso signed off on the approach post hoc. Vanessa Carter, Oliver A. Cornely, Marco Falcone, Daniel Gallego, Maddalena Giannella, Paolo Antonio Grossi, Livio Pagano, Nikolaos V. Sipsas, Alex Soriano, Mario Tumbarello and Fatima Cardoso provided suggestions on relevant studies. Matteo Bassetti, Pierluigi Viale and Fatima Cardoso contributed to the formulation of new hypotheses and future research directions. All authors reviewed and approved the final manuscript.

Funding. The work of the I'AMR working group was initiated and supported by Menarini Group. Menarini funded the project through covering costs of virtual steering committee meetings and consultancy fees for co-authors. In addition, Menarini has funded the journal's Rapid Service Fee for this publication. The members of the steering committee were selected on the basis of their clinical expertise in the fields of infectious diseases, oncology and/or transplant. Patient representatives were selected for their experience and advocacy for patient voices in AMR. The content of this manuscript was independently compiled by the working group with no input from Menarini.

Declarations

Conflict of Interest. Matteo Bassetti has received payment or honoraria, and has participated on Data Safety Monitoring Boards or Advisory Boards for Angelini, Cidara, Gilead, Menarini, MSD, Pfizer, Shionogi and Mundipharma, and is an Editorial Board member of Infectious Diseases and Therapy. Matteo Bassetti was not involved in the selection of peer reviewers for the manuscript nor any of the subsequent editorial decisions. Fatima Cardoso has received consulting fees from Amgen, Astellas/Medivation, AstraZeneca, Celgene, Daiichi-Sankyo, Eisai, GE Oncology, Genentech, Gilead, GlaxoSmithKline, Iqvia, Macrogenics, Medscape, Merck-Sharp, Merus BV, Mylan, Mundipharma, Novartis,

Pfizer, Pierre-Fabre, prIME Oncology, Roche, Sanofi, Samsung Bioepis, Seagen, Teva and Touchime. Vanessa Carter has received a grant from bioMérieux, received consulting fees from the Centre for Infectious Disease Research and Policy (CIDRAP), the University of Cape Town, TB HIV Care, the South African Heart Association, the South African Transplant Society, the International Pediatrics Association, Malcolm Lyons and Brivik Attorneys, and TB Proof South Africa, received payment or honoraria from Cepheid, bioMérieux, Menarini, Pfizer, NHS Wales, the SA Association of Hospital Industry Pharmacists (SAAHIP), the AMR Patient Group EU, BioCodex, the Fleming Initiative/Imperial College, CARB-X 2024, the Norwegian Institute of Public Health, Reckitt South Africa, the Institute for Infections & Immunity at St George's University of London, Roche, the Association de gestion du musée de Sciences Biologiques Dr Mérieux, the Department of Clinical Microbiology and Infectious Diseases in Johannesburg, Manchester University and Medscape, support for attending meetings from British Society for Antimicrobial Chemotherapy (BSAC), the Fleming Initiative, the European Patients Forum and the WHO, held leadership or fiduciary roles in the Advisory Committee on Antimicrobial Prescribing, Resistance, and Healthcare-Associated Infection (APRHAI) committee. WHO Task Force of AMR Survivors, WHO-STAG, the AMR Narrative and the Commonwealth Pharmacy Association, and received equipment, materials, drugs, medical writing, gifts or other services from Metro UK. Oliver A. Cornely has received grants or contracts from iMi, iHi, DFG, BMBF, Cidara, DZIF, EU-DG RTD, F2G, Gilead, Med-Pace, MSD, Mundipharma, Octapharma, Pfizer and Scynexis, received consulting fees from Abbvie, AiCuris, Basilea, Biocon, Cidara, Segirus, Gilead, GSK, IQVIA, Janssen, Matinas, MedPace, Menarini, Molecular Partners, MSG-ERC, Mundipharma, Noxxon, Octapharma, Pardes, Partner Therapeutics, Pfizer, PSI, Scynexis, Seres, Elion Therapeutics and Melinta, received payment or honoraria from Abbott, Abbvie, Akademie für Infektionsmedizin, Al-Jazeera Pharmaceuticals/ Hikma, amedes, AstraZeneca, Deutscher Ärzteverlag, Gilead, GSK, Grupo Biotoscana/United Medical/Knight, Ipsen Pharma, Medscape/ WebMD, MedUpdate, MSD, Moderna, Mundipharma, Noscendo, Paul-Martini-Stiftung, Pfizer, Sandoz, Segirus, Shionogi, streamedup!, Touch Independent and Vitis, received payment for expert testimony from Cidara, and participated on a Data Safety Monitoring Board or Advisory Board for Boston Strategic Partners, Cidara, IQVIA, Janssen, MedPace, PSI, Pulmocide, Shionogi, The Prime Meridian Group, Vedanta Biosciences, AstraZeneca and Melinta. Marco Falcone has received consulting fees from Menarini, Shionogi and Pfizer, and received payment or honoraria from MSD, Menarini, Pfizer and Thermo Fisher. Maddalena Giannella has received payment or honoraria from Shionogi, MSD, Pfizer and Menarini. Paolo Antonio Grossi has received consulting fees from MSD, Takeda, Gilead Sciences, AstraZeneca and AlloVir, and received payment or honoraria from MSD, Takeda, AstraZeneca and Menarini. Livio Pagano has received a grant or contract from Gilead, received payment or honoraria from Gilead, Jazz, Gentili, Cidara, Pfizer, 2FG, AstraZeneca and Menarini-Stemline, and participated on Data Safety Monitoring Boards or Advisory Boards for Cidara and Pulmocide. Nicola Silvestris has received payment or honoraria from Editree. Effetti, Sanitanova, Vihtali, Aristea, Pharmalex, Agorà, Menarini, Servier, Bristol, Glaxo, Isheo and MSD, received support for attending meetings and/or travel, and has other financial or non-financial interests with the Italian Association of Medical Oncology. Nikolaos V. Sipsas has received payment or honoraria, and support for attending meetings and/or travel from Menarini, and has held a leadership or fiduciary role in the Hellenic Society for Infectious Diseases. Alex Soriano had received grants from Gilead Sciences and Pfizer, received consulting fees and payment or honoraria from Pfizer, MSD, Angelini, Shionogi, Gilead and Menarini, received support for attending meetings and/or travel from Pfizer, and is an Editor-in-Chief of Infectious Diseases and Therapy. Alex Soriano was not involved in the selection of peer reviewers for the manuscript nor any of the subsequent editorial decisions. Pierluigi Viale received consulting fees from Menarini, MSD, Pfizer, Gilead, AstraZeneca, Shionogi and Advanz Pharma, and received payment or honoraria from Gilead, bioMérieux,

Pfizer, Shionogi, Menarini and Advanz Pharma. Antonella Cardone, Daniel Gallego and Mario Tumbarello declare no conflicts of interest.

Ethical Approval. This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors. No new data were generated.

Open Access. This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativeco mmons.org/licenses/by-nc/4.0/.

REFERENCES

- Naghavi M, Vollset SE, Ikuta KS, et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet. 2024;404:1199–226. https://pubmed.ncbi.nlm.nih.gov/39299261/. Accessed 2025 Jan 18.
- World Bank Group. Drug-resistant infections: a threat to our economic future. 2017. https://documents1.worldbank.org/curated/en/323311493396993758/pdf/final-report.pdf.
- 3. Halawa EM, Fadel M, Al-Rabia MW, et al. Antibiotic action and resistance: updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Front Pharmacol. 2023;14:1305294.
- World Health Organization. 2023 Antibacterial agents in clinical and preclinical development: an

- overview and analysis. 2024. https://www.who.int/publications/i/item/9789240094000.
- Cavenagh Health. The reckoning of antimicrobial resistance: a new biological frontier. 2024. https:// www.pharmafocusasia.com/whitepapers/the-recko ning-of-antimicrobial-resistance-a-new-biologicalfrontier. Accessed 2025 May 7.
- Falcone M, Tiseo G, Galfo V, et al. Bloodstream infections in patients with rectal colonization by *Klebsiella pneumoniae* producing different type of carbapenemases: a prospective, cohort study (CHI-MERA study). Clin Microbiol Infect. 2022;28:298. e1-298.e7.
- 7. Pouch SM, Patel G, AST Infectious Diseases Community of Practice. Multidrug-resistant gram-negative bacterial infections in solid organ transplant recipients-guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant. 2019;33:e13594.
- 8. Nanayakkara AK, Boucher HW, Fowler VG, Jezek A, Outterson K, Greenberg DE. Antibiotic resistance in the patient with cancer: escalating challenges and paths forward. CA Cancer J Clin. 2021;71:488–504.
- 9. Zheng Y, Chen Y, Yu K, et al. Fatal infections among cancer patients: a population-based study in the United States. Infect Dis Ther. 2021;10:871–95.
- Longitude Prize. Effectiveness of cancer treatments threatened by rising antibiotic resistance. London; 2020. https://amr.longitudeprize.org/resources/ effectiveness-of-cancer-treatments-threatened-byrising-antibiotic-resistance/. Accessed 2025 May 7.
- 11. Okamoto K, Santos CAQ. Management and prophylaxis of bacterial and mycobacterial infections among lung transplant recipients. Ann Transl Med. 2020;8:413.
- 12. van Rhijn N, Arikan-Akdagli S, Beardsley J, et al. Beyond bacteria: the growing threat of antifungal resistance. Lancet. 2024;404:1017–8. http://www.thelancet.com/article/S0140673624016957/fullt ext. Accessed 2025 Jan 26.
- 13. Papanicolaou GA, Ustun C, Young J-AH, et al. Bloodstream infection due to vancomycin-resistant *Enterococcus* is associated with increased mortality after hematopoietic cell transplantation for acute leukemia and myelodysplastic syndrome: a multicenter, retrospective cohort study. Clin Infect Dis. 2019;69:1771–9.
- 14. Lay C, Law N, Holm AM, Benden C, Aslam S. Outcomes in cystic fibrosis lung transplant recipients infected with organisms labeled as pan-resistant: an ISHLT registry-based analysis. J Heart Lung Transplant. 2019;38:545–52.

- 15. Gudiol C, Albasanz-Puig A, Laporte-Amargós J, et al. Clinical predictive model of multidrug resistance in neutropenic cancer patients with bloodstream infection due to *Pseudomonas aeruginosa*. Antimicrob Agents Chemother. 2020;64:e02494.
- 16. Averbuch D, Tridello G, Hoek J, et al. Intercontinental study on pre-engraftment and post-engraftment Gram-negative rods bacteremia in hematopoietic stem cell transplantation patients: risk factors and association with mortality. J Infect. 2020;81:882–94.
- 17. Giannella M, Freire M, Rinaldi M, et al. Development of a risk prediction model for carbapenemresistant enterobacteriaceae infection after liver transplantation: a multinational cohort study. Clin Infect Dis. 2021;73:e955–66.
- Albasanz-Puig A, Durà-Miralles X, Laporte-Amargós J, et al. Effect of combination antibiotic empirical therapy on mortality in neutropenic cancer patients with *Pseudomonas aeruginosa* pneumonia. Microorganisms. 2022;10:733.
- Bergas A, Albasanz-Puig A, Fernández-Cruz A, et al. Real-life use of ceftolozane/tazobactam for the treatment of bloodstream infection due to *Pseu-domonas aeruginosa* in neutropenic hematologic patients: a matched control study (ZENITH Study). Microbiol Spectr. 2022;10:e0229221.
- 20. Royo-Cebrecos C, Laporte-Amargós J, Peña M, et al. *Pseudomonas aeruginosa* bloodstream infections in patients with cancer: differences between patients with hematological malignancies and solid tumors. Pathogens. 2022;11:1132.
- 21. Rinaldi M, Bonazzetti C, Gallo M, et al. Validation of the INCREMENT-SOT-CPE score in a large cohort of liver transplant recipients with carbapenemresistant Enterobacterales infection. Transpl Infect Dis. 2023;25:e14036.
- Belga S, Chiang D, Kabbani D, Abraldes JG, Cervera C. The direct and indirect effects of vancomycinresistant enterococci colonization in liver transplant candidates and recipients. Expert Rev Anti Infect Ther. 2019;17(5):363–73.
- Hansen B-A, Wendelbo Ø, Bruserud Ø, Hemsing AL, Mosevoll KA, Reikvam H. Febrile neutropenia in acute leukemia epidemiology, etiology, pathophysiology and treatment. Mediterr J Hematol Infect Dis. 2020;12:e2020009.
- 24. Gudiol C, Sabé N, Carratalà J. Is hospital-acquired pneumonia different in transplant recipients? Clin Microbiol Infect. 2019;25:1186–94.
- 25. Garcia-Vidal C, Stern A, Gudiol C. Multidrugresistant, gram-negative infections in high-risk

- haematologic patients: an update on epidemiology, diagnosis and treatment. Curr Opin Infect Dis. 2021;34:314–22.
- 26. Congedi S, Navalesi P, Boscolo A. Multidrugresistant organisms in lung transplant: a narrative review. Curr Opin Organ Transplant. 2023;28:174–9.
- 27. Giannella M, Rinaldi M, Viale P. Antimicrobial resistance in organ transplant recipients. Infect Dis Clin N Am. 2023;37:515–37.
- 28. Freire MP, Pouch S, Manesh A, Giannella M. Burden and management of multi-drug resistant organism infections in solid organ transplant recipients across the world: a narrative review. Transpl Int. 2024;37:12469.
- 29. Pilmis B, Weiss E, Scemla A, et al. Multidrugresistant Enterobacterales infections in abdominal solid organ transplantation. Clin Microbiol Infect. 2023;29:38–43.
- 30. Huggins J, Barnett I, David MZ. Effects of antimicrobial therapy duration and class on risk of antimicrobial-resistant Gram-negative bacillus bloodstream infection in patients with AML. Transpl Infect Dis. 2023;25:e14115.
- 31. Trecarichi EM, Giuliano G, Cattaneo C, et al. Bloodstream infections due to Gram-negative bacteria in patients with hematologic malignancies: updated epidemiology and risk factors for multidrug-resistant strains in an Italian perspective survey. Int J Antimicrob Agents. 2023;61:106806.
- 32. Haidar G, Green M, American Society of Transplantation Infectious Diseases Community of Practice. Intra-abdominal infections in solid organ transplant recipients: guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant. 2019;33:e13595.
- 33. Danielsen AS, Franconeri L, Page S, et al. Clinical outcomes of antimicrobial resistance in cancer patients: a systematic review of multivariable models. BMC Infect Dis. 2023;23:247.
- 34. Mercuro NJ, Gill CM, Kenney RM, Alangaden GJ, Davis SL. Treatment and outcomes of *Ente-rococcus faecium* bloodstream infections in solid organ transplant recipients. Transpl Infect Dis. 2020;22:e13251.
- 35. Oltolini C, Greco R, Galli L, et al. Infections after allogenic transplant with post-transplant cyclophosphamide: impact of donor HLA matching. Biol Blood Marrow Transplant. 2020;26:1179–88.

- 36. Busani S, Serafini G, Mantovani E, et al. Mortality in patients with septic shock by multidrug resistant bacteria: risk factors and impact of sepsis treatments. J Intensive Care Med. 2019;34:48–54.
- 37. Boyd AM, Perissinotti AJ, Nagel JL, Frame DG, Marini BL. Risk factors for cefepime nonsusceptible Gram-negative infections in allogeneic hematopoietic cell transplant recipients. J Oncol Pharm Pract. 2019;25:279–88.
- 38. Satlin MJ, Chavda KD, Baker TM, et al. Colonization with levofloxacin-resistant extended-spectrum β-lactamase-producing Enterobacteriaceae and risk of bacteremia in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2018;67:1720–8.
- 39. Errico G, Gagliotti C, Monaco M, et al. Colonization and infection due to carbapenemase-producing Enterobacteriaceae in liver and lung transplant recipients and donor-derived transmission: a prospective cohort study conducted in Italy. Clin Microbiol Infect. 2019;25:203–9.
- 40. Antonio M, Gudiol C, Royo-Cebrecos C, Grillo S, Ardanuy C, Carratalà J. Current etiology, clinical features and outcomes of bacteremia in older patients with solid tumors. J Geriatr Oncol. 2019;10:246–51.
- 41. Heidenreich D, Kreil S, Jawhar M, et al. Course of colonization by multidrug-resistant organisms after allogeneic hematopoietic cell transplantation. Ann Hematol. 2018;97:2501–8.
- 42. Puerta-Alcalde P, Cardozo C, Suárez-Lledó M, et al. Current time-to-positivity of blood cultures in febrile neutropenia: a tool to be used in stewardship de-escalation strategies. Clin Microbiol Infect. 2019;25:447–53.
- Ballo O, Tarazzit I, Stratmann J, et al. Colonization with multidrug resistant organisms determines the clinical course of patients with acute myeloid leukemia undergoing intensive induction chemotherapy. PLoS ONE. 2019;14:e0210991.
- 44. O'Donnell RL, Angelopoulos G, Beirne JP, et al. Impact of surgical site infection (SSI) following gynaecological cancer surgery in the UK: a traineeled multicentre audit and service evaluation. BMJ Open. 2019;9:e024853.
- 45. Kamboj M, Cohen N, Huang Y-T, et al. Impact of empiric treatment for vancomycin-resistant enterococcus in colonized patients early after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2019;25:594–8.
- 46. Weber S, Hogardt M, Reinheimer C, et al. Bloodstream infections with vancomycin-resistant enterococci are associated with a decreased survival in

- patients with hematological diseases. Ann Hematol. 2019;98:763–73.
- 47. Massa E, Michailidou E, Agapakis D, et al. Colonization and infection with extensively drug resistant gram-negative bacteria in liver transplant recipients. Transplant Proc. 2019;51:454–6.
- 48. Giannella M, Bartoletti M, Campoli C, et al. The impact of carbapenemase-producing Enter-obacteriaceae colonization on infection risk after liver transplantation: a prospective observational cohort study. Clin Microbiol Infect. 2019;25:1525–31.
- 49. Mularoni A, Martucci G, Douradinha B, et al. Epidemiology and successful containment of a carbapenem-resistant Enterobacteriaceae outbreak in a Southern Italian Transplant Institute. Transpl Infect Dis. 2019;21:e13119.
- 50. Zając-Spychała O, Skalska-Sadowska J, Wachowiak J, et al. Infections in children with acute myeloid leukemia: increased mortality in relapsed/refractory patients. Leuk Lymphoma. 2019;60:3028–35.
- 51. Mazo C, Pont T, Ballesteros MA, et al. Pneumonia versus graft dysfunction as the cause of acute respiratory failure after lung transplant: a 4-year multicentre prospective study in 153 adults requiring intensive care admission. Eur Respir J. 2019;54:1801512.
- 52. Martinez-Nadal G, Puerta-Alcalde P, Gudiol C, et al. Inappropriate empirical antibiotic treatment in high-risk neutropenic patients with bacteremia in the era of multidrug resistance. Clin Infect Dis. 2020;70:1068–74.
- 53. Procaccio F, Masiero L, Vespasiano F, et al. Organ donor screening for carbapenem-resistant gramnegative bacteria in Italian intensive care units: the DRIn study. Am J Transplant. 2020;20:262–73.
- 54. Friedrich K, Krempl J, Schamoni S, et al. Multidrug-resistant bacteria and disease progression in patients with end-stage liver disease and after liver transplantation. J Gastrointest Liver Dis. 2019;28:303–10.
- 55. Zając-Spychała O, Wachowiak J, Frączkiewicz J, et al. Multidrug-resistant bacterial infections in children undergoing haematopoietic stem cell transplantation over a 6-year period: analysis of the Polish Pediatric Group for Hematopoietic Stem Cell Transplantation. J Appl Microbiol. 2020;128:292–300.
- 56. Simkins J, Morillas-Rodriguez JA, Morris MI, et al. Bloodstream infection caused by enteric organisms during the first 6 months after intestinal transplant. Transpl Infect Dis. 2019;21:e13064.

- 57. Massa E, Michailidou E, Papadopoulos S, et al. Perioperative chemoprophylaxis or treatment for extensively drug resistant gram-negative bacteria in patients undergoing liver transplantation based on preoperative donor/recipient surveillance cultures: a prospective study. Transplant Proc. 2019;51:457–60.
- 58. Petersen J, Lindner C, Hakki M. Incidence and outcomes of bacterial bloodstream infections during acute graft-versus-host disease involving the gastrointestinal tract after hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2019;25:1648–53.
- 59. Bonnéric S, Maisin A, Kwon T, Deschênes G, Niel O. Asymptomatic bacteriuria in pediatric kidney transplant recipients: to treat or not to treat? A retrospective study. Pediatr Nephrol. 2019;34:1141–5.
- 60. Puerta-Alcalde P, Cardozo C, Marco F, et al. Changing epidemiology of bloodstream infection in a 25-years hematopoietic stem cell transplant program: current challenges and pitfalls on empiric antibiotic treatment impacting outcomes. Bone Marrow Transplant. 2020;55:603–12.
- 61. Schluger A, Rosenblatt R, Knotts R, Verna EC, Pereira MR. *Clostridioides difficile* infection and recurrence among 2622 solid organ transplant recipients. Transpl Infect Dis. 2019;21:e13184.
- 62. Gómez-López R, Barge-Caballero E, Fernández-Ugidos P, et al. In-hospital post-operative infection after heart transplantation: epidemiology, clinical management, and outcome. Surg Infect (Larchmt). 2020;21:179–91.
- 63. Trecarichi EM, Giuliano G, Cattaneo C, et al. Bloodstream infections caused by *Escherichia coli* in onco-haematological patients: risk factors and mortality in an Italian prospective survey. PLoS ONE. 2019;14:e0224465.
- 64. Joncour A, Puyade M, Michaud A, Tourani J-M, Cazenave-Roblot F, Rammaert B. Is current initial empirical antibiotherapy appropriate to treat bloodstream infections in short-duration chemoinduced febrile neutropenia? Support Care Cancer. 2020;28:3103–11.
- Dohna Schwake C, Guiddir T, Cuzon G, et al. Bacterial infections in children after liver transplantation: a single-center surveillance study of 345 consecutive transplantations. Transpl Infect Dis. 2020;22:e13208.
- 66. Bhatt PJ, Ali M, Rana M, et al. Infections due to multidrug-resistant organisms following heart transplantation: epidemiology, microbiology, and outcomes. Transpl Infect Dis. 2020;22:e13215.

- 67. Fourdrain A, Bouabdallah I, Gust L, et al. Screening and topical decolonization of preoperative nasal Staphylococcus aureus carriers to reduce the incidence of postoperative infections after lung cancer surgery: a propensity matched study. Interact Cardiovasc Thorac Surg. 2020;30:552–8.
- 68. Dubler S, Lenz M, Zimmermann S, et al. Does vancomycin resistance increase mortality in *Enterococcus faecium* bacteraemia after orthotopic liver transplantation? A retrospective study. Antimicrob Resist Infect Control. 2020;9:22.
- 69. Vigara LA, Villanego F, Cazorla JM, et al. Characteristics and evolution of renal transplant recipients infected by carbapenemase-producing Klebsiella pneumoniae. Transplant Proc. 2020;52:519–22.
- 70. Anesi JA, Han JH, Lautenbach E, et al. Impact of deceased donor multidrug-resistant bacterial organisms on organ utilization. Am J Transplant. 2020;20:2559–66.
- 71. van Delden C, Stampf S, Hirsch HH, et al. Burden and timeline of infectious diseases in the first year after solid organ transplantation in the Swiss Transplant Cohort Study. Clin Infect Dis. 2020;71:e159–69.
- 72. Spence AB, Natarajan M, Fogleman S, Biswas R, Girlanda R, Timpone J. Intra-abdominal infections among adult intestinal and multivisceral transplant recipients in the 2-year post-operative period. Transpl Infect Dis. 2020;22:e13219.
- 73. Webb BJ, Majers J, Healy R, et al. Antimicrobial stewardship in a hematological malignancy unit: carbapenem reduction and decreased vancomycinresistant enterococcus infection. Clin Infect Dis. 2020;71:960–7.
- 74. Drayson MT, Bowcock S, Planche T, et al. Levofloxacin prophylaxis in patients with newly diagnosed myeloma (TEAMM): a multicentre, double-blind, placebo-controlled, randomised, phase 3 trial. Lancet Oncol. 2019;20:1760–72.
- 75. Gowin E, Świątek-Kościelna B, Mańkowski P, Januszkiewicz-Lewandowska D. The profile of microorganisms responsible for port-related bacteremia in pediatric hemato-oncological patients. Cancer Control. 2020;27:1073274820904696.
- 76. Czarkowska-Pączek B, Wawiórko E, Młynarczyk G, Paczek L. Antibiotic-resistant bacterial colonization increases the number of hospitalizations in patients after solid organ transplantation or with non-communicable diseases. Adv Clin Exp Med. 2020;29:307–12.
- 77. Waszczuk-Gajda A, Drozd-Sokołowska J, Basak GW, et al. Infectious complications in patients with

- multiple myeloma after high-dose chemotherapy followed by autologous stem cell transplant: nationwide study of the infectious complications study group of the Polish Adult Leukemia Group. Transplant Proc. 2020;52:2178–85.
- 78. Russo A, Picciarella A, Russo R, Sabetta F. Clinical features, therapy and outcome of patients hospitalized or not for nursing-home acquired pneumonia. J Infect Chemother. 2020;26:807–12.
- 79. Zając-Spychała O, Wachowiak J, Czyżewski K, et al. Hematopoietic stem cell transplantation does not increase the risk of infection-related complications for pediatric patients with Hodgkin and non-Hodgkin lymphomas: a multicenter nationwide study. Transpl Infect Dis. 2020;22:e13292.
- 80. Tsikala-Vafea M, Basoulis D, Pavlopoulou I, et al. Bloodstream infections by gram-negative bacteria in kidney transplant patients: incidence, risk factors, and outcome. Transpl Infect Dis. 2020;22:e13442.
- 81. Babiker A, Clarke LG, Saul M, et al. Changing epidemiology and decreased mortality associated with carbapenem-resistant gram-negative bacteria, 2000–2017. Clin Infect Dis. 2021;73:e4521–30.
- 82. La Hoz RM, Liu T, Xie D, et al. The use of automated data extraction tools to develop a solid organ transplant registry: proof of concept study of bloodstream infections. J Infect. 2021;82:41–7.
- 83. Melamed KH, Williams J, Wang X, et al. Development of secondary bacterial pneumonia in adults presenting with influenza versus noninfluenza viral respiratory infection. Ther Adv Respir Dis. 2020;14:1753466620963026.
- 84. Stratmann JA, Lacko R, Ballo O, et al. Colonization with multi-drug-resistant organisms negatively impacts survival in patients with non-small cell lung cancer. PLoS ONE. 2020;15:e0242544.
- 85. Ferstl PG, Filmann N, Heilgenthal E-M, et al. Colonization with multidrug-resistant organisms is associated with in increased mortality in liver transplant candidates. PLoS ONE. 2021;16:e0245091.
- 86. Kohler P, Wolfensberger A, Stampf S, et al. Temporal trends, risk factors and outcomes of infections due to extended-spectrum β-lactamase producing Enterobacterales in Swiss solid organ transplant recipients between 2012 and 2018. Antimicrob Resist Infect Control. 2021;10:50.
- 87. Raad C, Behdenna A, Fuhrmann C, et al. Trends in bacterial bloodstream infections and resistance in immuno-compromised patients with febrile neutropenia: a retrospective analysis. Eur J Pediatr. 2021;180:2921–30.

- 88. Clerici D, Oltolini C, Greco R, et al. The place of ceftazidime/avibactam and ceftolozane/tazobactam for therapy of haematological patients with febrile neutropenia. Int J Antimicrob Agents. 2021;57:106335.
- 89. Puerta-Alcalde P, Chumbita M, Charry P, et al. Risk factors for mortality in hematopoietic stem cell transplantation recipients with bloodstream infection: points to be addressed by future guidelines. Transplant Cell Ther. 2021;27:501.e1-501. e6.
- 90. Lendak D, Puerta-Alcalde P, Moreno-García E, et al. Changing epidemiology of catheter-related bloodstream infections in neutropenic oncohematological patients. PLoS ONE. 2021;16:e0251010.
- 91. Weber S, Magh A, Hogardt M, et al. Profiling of bacterial bloodstream infections in hematological and oncological patients based on a comparative survival analysis. Ann Hematol. 2021;100:1593–602.
- 92. Gałązka P, Styczyński J, Czyżewski K, et al. Impact of decontamination therapy on gastrointestinal acute graft-versus-host disease after allogeneic hematopoietic cell transplantation in children: decontamination therapy in allo-HCT. Curr Res Transl Med. 2021;69:103298.
- 93. Alcamo AM, Trivedi MK, Dulabon C, et al. Multidrug-resistant organisms: a significant cause of severe sepsis in pediatric intestinal and multi-visceral transplantation. Am J Transplant. 2022;22:122–9.
- 94. Himmelsbach V, Knabe M, Ferstl PG, et al. Colonization with multidrug-resistant organisms impairs survival in patients with hepatocellular carcinoma. J Cancer Res Clin Oncol. 2022;148:1465–72.
- 95. Salamonowicz-Bodzioch M, Frączkiewicz J, Czyżewski K, et al. Analysis of incidence and risk factors of the multidrug resistant gastrointestinal tract infection in children and adolescents undergoing allogeneic and autologous hematopoietic cell transplantation: a nationwide study. Ann Hematol. 2022;101:191–201.
- 96. McFarlane AC, Kabbani D, Bakal JA, Smith SW. Clinical impact of vancomycin-resistant enterococci colonization in nonliver solid organ transplantation and its implications for infection control strategies: a single-center, 10-year retrospective study. Transpl Infect Dis. 2021;23:e13747.
- 97. Muggeo P, Zama D, Decembrino N, et al. Ecthyma gangrenosum in children with cancer: diagnosis at a glance: a retrospective study from the infection working group of Italian Pediatric Hematology Oncology Association. Pediatr Infect Dis J. 2022;41:238–42.

- 98. Facchin G, Candoni A, Lazzarotto D, et al. Clinical characteristics and outcome of 125 polymicrobial bloodstream infections in hematological patients: an 11-year epidemiologic survey. Support Care Cancer. 2022;30:2359–66.
- 99. Chumbita M, Puerta-Alcalde P, Gudiol C, et al. Impact of empirical antibiotic regimens on mortality in neutropenic patients with bloodstream infection presenting with septic shock. Antimicrob Agents Chemother. 2022;66:e0174421.
- 100. Anesi JA, Blumberg EA, Han JH, et al. Impact of donor multidrug-resistant organisms on solid organ transplant recipient outcomes. Transpl Infect Dis. 2022;24:e13783.
- 101. Cammann S, Karabulut S, Detemple DE, et al. Antibiotic-resistant bacteria colonizing the bile duct are associated with increased morbidity and mortality after resection of extrahepatic cholangiocarcinoma. Surg Infect (Larchmt). 2022;23:270–9.
- 102. Chiang D, Dingle TC, Belga S, et al. Association between gut colonization of vancomycin-resistant enterococci and liver transplant outcomes. Transpl Infect Dis. 2022;24:e13821.
- 103. Cernan M, Szotkowski T, Hubacek J, et al. Infectious complications of induction treatment for acute myeloid leukaemia using the '7 + 3' protocol without antibiotic prophylaxis—15 years of experience of one clinical site. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2023;167:236–45.
- 104. Cao S, Tennakoon L, Brubaker AL, Forrester JD. Infection with two multi-drug-resistant organisms in solid organ transplant patients is associated with increased mortality and prolonged hospitalization. Surg Infect (Larchmt). 2022;23:394–9.
- 105. Gianotti L, Honselmann KC, Angrisani M, et al. Diversified effects of bile contamination, postoperative infections, and antimicrobial resistance level on the oncologic prognosis after pancreatoduodenectomy for ductal adenocarcinoma. Anticancer Res. 2022;42:2743–52.
- 106. Chesdachai S, Udompap P, Yetmar ZA, et al. Infectious complications in acute graft-versus-host disease after liver transplantation. Transpl Infect Dis. 2022;24:e13843.
- 107. Ruzzenente A, Alaimo L, Caputo M, et al. Infectious complications after surgery for perihilar cholangio-carcinoma: a single Western center experience. Surgery. 2022;172:813–20.
- 108. Schreiber PW, Laager M, Boggian K, et al. Surgical site infections after simultaneous pancreas kidney and pancreas transplantation in the Swiss Transplant Cohort Study. J Hosp Infect. 2022;128:47–53.

- 109. Boscolo A, Sella N, Pettenuzzo T, et al. Multidrugresistant and extended-spectrum β-lactamase gram-negative bacteria in bilateral lung transplant recipients: incidence, risk factors, and in-hospital mortality. Chest. 2022;162:1255–64.
- 110. Anesi JA, Lautenbach E, Thom KA, et al. Clinical outcomes and risk factors for carbapenem-resistant enterobacterales bloodstream infection in solid organ transplant recipients. Transplantation. 2023;107:254–63.
- 111. Kinzler MN, Stehle A, Schulze F, et al. Colonization with multidrug-resistant organisms is associated with impaired survival of patients with surgically resected cholangiocarcinoma. Liver Int. 2023;43:490–9.
- 112. Bangeas A, Protonotariou E, Hatzipantelis E, et al. Clinical characteristics and risk factors for blood-stream infections in children with cancer: a report from a pediatric hematology oncology unit. Cardiovasc Hematol Agents Med Chem. 2023;21:193–201.
- 113. Miutescu B, Vuletici D, Burciu C, et al. Identification of microbial species and analysis of antimicrobial resistance patterns in acute cholangitis patients with malignant and benign biliary obstructions: a comparative study. Medicina (Kaunas). 2023;59:721.
- 114. Chumbita M, Puerta-Alcalde P, Yáñez L, et al. High rate of inappropriate antibiotics in patients with hematologic malignancies and *Pseudomonas aeruginosa* bacteremia following international guideline recommendations. Microbiol Spectr. 2023;11:e0067423.
- 115. Herrera S, Carbonell I, Cofan F, et al. Impact of robotic-assisted kidney transplantation on post-transplant infections: a case-control study. World J Urol. 2023;41:2847–53.
- 116. Trikha R, Greig D, Sekimura T, et al. The microbial profile of infected endoprosthetic reconstructions after wide excision for patients with musculoskeletal tumors: a call for pathogen-based practices. J Surg Oncol. 2023;128:1437–45.
- 117. Tarhini H, Waked R, Rahi M, et al. Investigating infectious outcomes in adult patients undergoing solid organ transplantation: a retrospective single-center experience, Paris, France. PLoS ONE. 2023;18:e0291860.
- 118. Spence AB, Novick E, Natarajan M, Burkhart N, Girlanda R, Timpone J. Bloodstream infections among intestinal and multivisceral transplant recipients. Transpl Infect Dis. 2021;23:e13668.
- 119. Åttman E, Syrjänen J, Lyytikäinen O, et al. Healthcare-associated blood stream infections

- in hematological patients in Finland during the years 2006–2016. Eur J Haematol. 2021;107:311–7.
- 120. Albasanz-Puig A, Gudiol C, Puerta-Alcalde P, et al. Impact of the inclusion of an aminoglycoside to the initial empirical antibiotic therapy for gramnegative bloodstream infections in hematological neutropenic patients: a propensity-matched cohort study (AMINOLACTAM study). Antimicrob Agents Chemother. 2021;65:e0004521.
- 121. Hong Nguyen M, Shields RK, Chen L, et al. Molecular epidemiology, natural history, and long-term outcomes of multidrug-resistant enterobacterales colonization and infections among solid organ transplant recipients. Clin Infect Dis. 2022;74:395–406.
- 122. Satlin MJ, Chen L, Douglass C, et al. Colonization with fluoroquinolone-resistant enterobacterales decreases the effectiveness of fluoroquinolone prophylaxis in hematopoietic cell transplant recipients. Clin Infect Dis. 2021;73:1257–65.
- 123. Raftery NB, Murphy CF, Donohoe CL, et al. The complexity of defining postoperative pneumonia after esophageal cancer surgery: a spectrum of lung injury rather than a simple infective complication? Ann Surg. 2022;276:e400–6.
- 124. Heldman MR, Guo K, Nelson B, Babu T, Ison MG. Treatment of multidrug-resistant gramnegative bacilli after solid organ transplant: outcomes and complications. Transpl Infect Dis. 2021;23:e13474.
- 125. Marchesi F, Toma L, Di Domenico EG, et al. Ceftolozane-tazobactam for febrile neutropenia treatment in hematologic malignancy patients colonized by multi-resistant enterobacteriaceae: preliminary results from a prospective cohort study. Mediterr J Hematol Infect Dis. 2020;12:e2020065.
- 126. Zając-Spychała O, Zaucha-Prażmo A, Zawitkowska J, et al. Infectious complications after hematopoietic stem cell transplantation for primary immunodeficiency in children: a multicenter nationwide study. Pediatr Allergy Immunol. 2020;31:537–43.
- 127. Tamzali Y, Scemla A, Bonduelle T, et al. Specificities of meningitis and meningo-encephalitis after kidney transplantation: a French retrospective cohort study. Transpl Int. 2023;36:10765.
- 128. Clerici D, Galli L, Greco R, et al. Levofloxacin prophylaxis vs no prophylaxis in patients with neutropenia within an endemic country for carbapenem-resistant GNB. Blood Adv. 2023;7:1621–34.
- Hernández-Jiménez P, López-Medrano F, Fernández-Ruiz M, et al. Risk factors and outcomes for multidrug resistant *Pseudomonas aeruginosa*

- infection in immunocompromised patients. Antibiotics (Basel). 2022;11:1459.
- 130. Richert-Przygonska M, Czyzewski K, Dziedzic M, et al. Infections with Stenotrophomonas maltophilia in children undergoing anticancer therapy or hematopoietic cell transplantation: a multicenter nationwide study. Pediatr Infect Dis J. 2022;41:846–50.
- 131. Ostaszewska A, Domagała P, Zawistowski M, Karpeta E, Wszoła M. Single-center experience with perioperative antibiotic prophylaxis and surgical site infections in kidney transplant recipients. BMC Infect Dis. 2022;22:199.
- 132. Grimes R, Cherrier L, Nasar A, Nailor MD, Walia R, Goodlet KJ. Outcomes of nontuberculous mycobacteria isolation among lung transplant recipients: a matched case-control with retrospective cohort study. Am J Health Syst Pharm. 2022;79:338–45.
- 133. Mori N, Szvalb AD, Adachi JA, Tarrand JJ, Mulanovich VE. Clinical presentation and outcomes of non-typhoidal Salmonella infections in patients with cancer. BMC Infect Dis. 2021;21:1021.
- 134. Lopera C, Monzó P, Aiello TF, et al. Prevalence and impact of multidrug-resistant bacteria in solid cancer patients with bloodstream infection: a 25-year trend analysis. Microbiol Spectr. 2024;12:e0296123.
- 135. Congedi S, Peralta A, Muraro L, et al. Gram-negative bacterial colonizations before bilateral lung transplant. The impact of 'targeted' versus 'standard' surgical prophylaxis. BMC Infect Dis. 2024;24:307.
- 136. Mularoni A, Cona A, Campanella M, et al. Donorderived carbapenem-resistant gram-negative bacterial infections in solid organ transplant recipients: active surveillance enhances recipient safety. Am J Transplant. 2024;24:1046–56.
- 137. Ittah-Cohen I, Knoeri MJ, Bourcier T, Merabet L, Bouheraoua N, Borderie VM. Infectious keratitis following corneal transplantation: a long-term cohort study. Clin Exp Ophthalmol. 2024;52:402–15.
- 138. Meschiari M, Kaleci S, Del MM, et al. Vancomycin resistant enterococcus risk factors for hospital colonization in hematological patients: a matched case-control study. Antimicrob Resist Infect Control. 2023;12:126.
- 139. Rothe K, Bachfischer T, Karapetyan S, et al. Are enterococcal bloodstream infections an independent risk factor for a poorer 5-year survival or just a marker for severity of illness?—the Munich multicentric enterococci cohort. Microbiol Spectr. 2023;11:e0258523.

- 140. Ranganath N, Yetmar ZA, McCandless AR, et al. Evaluating antimicrobial duration for Gram-negative bacteremia in patients with neutropenia due to hematologic malignancy or hematopoietic stem cell transplantation. Transpl Infect Dis. 2023;25:e14085.
- 141. Datta R, Han L, Doyle M, et al. Antibiotic therapy is associated with adverse drug events among older adults with advanced cancer: a cohort study. Palliat Med. 2023;37:793–8.
- 142. Mohan M, Susanibar-Adaniya S, Buros A, et al. Bacteremias following autologous stem cell transplantation for multiple myeloma: risk factors and outcomes. Transpl Infect Dis. 2019;21:e13052.
- 143. Doan VP, Yeh JC, Gulbis AM, Aitken SL, Ariza-Heredia E, Ahmed S. Levofloxacin versus cefpodoxime for antibacterial prophylaxis in allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2019;25:1637–41.
- 144. Girmenia C, Rossolini GM, Piciocchi A, et al. Infections by carbapenem-resistant Klebsiella pneumoniae in SCT recipients: a nationwide retrospective survey from Italy. Bone Marrow Transplant. 2015;50:282–8.
- 145. Di Domenico EG, Cavallo I, Sivori F, et al. Biofilm production by carbapenem-resistant *Klebsiella pneu-moniae* significantly increases the risk of death in oncological patients. Front Cell Infect Microbiol. 2020;10:561741.
- 146. Ardolino E, Wang SS, Patwardhan VR. Evidence of significant ceftriaxone and quinolone resistance in cirrhotics with spontaneous bacterial peritonitis. Dig Dis Sci. 2019;64:2359–67.
- 147. Winstead RJ, Waldman G, Autry EB, et al. Outcomes of lung transplantation for cystic fibrosis in the setting of extensively drug-resistant organisms. Prog Transplant. 2019;29:220–4.
- 148. Pérez-Nadales E, Gutiérrez-Gutiérrez B, Natera AM, et al. Predictors of mortality in solid organ transplant recipients with bloodstream infections due to carbapenemase-producing Enterobacterales: the impact of cytomegalovirus disease and lymphopenia. Am J Transplant. 2019;20:1629–41.
- 149. Li Z, Zhuang H, Wang G, Wang H, Dong Y. Prevalence, predictors, and mortality of bloodstream infections due to methicillin-resistant *Staphylococcus aureus* in patients with malignancy: systemic review and meta-analysis. BMC Infect Dis. 2021;21:74.
- 150. Taimur S, Pouch SM, Zubizarreta N, et al. Impact of pre-transplant carbapenem-resistant Enterobacterales colonization and/or infection on solid

- organ transplant outcomes. Clin Transplant. 2021;35:e14239.
- 151. Abad CLR, Razonable RR. Multi-drug resistant and rifampin-resistant tuberculosis in transplant recipients. Transpl Infect Dis. 2023;25:e14088.
- 152. Lupia T, Carnevale-Schianca F, Vita D, et al. *Stenotrophomonas maltophilia* infections in haematological malignancies and hematopoietic stem cell transplantation: a case series including cefiderocolbased regimens. Medicina (Kaunas). 2024;60:88.
- 153. Almohaya A, Fersovich J, Weyant RB, et al. The impact of colonization by multidrug resistant bacteria on graft survival, risk of infection, and mortality in recipients of solid organ transplant: systematic review and meta-analysis. Clin Microbiol Infect. 2024;30:1228–43.
- 154. Tilley MS, Edwards SW, Brown ML, et al. Assessment of posttransplant bacteremia caused by extended-spectrum beta-lactamase-producing gram-negative bacteria among kidney transplant recipients. Clin Transplant. 2024;38:e15390.
- 155. Fernández-Cruz A, Ortega L, García G, et al. Etiology and prognosis of pneumonia in patients with solid tumors: a prospective cohort of hospitalized cases. Oncologist. 2020;25:e861–9.
- 156. Biscione A, Corrado G, Quagliozzi L, et al. Health-care associated infections in gynecologic oncology: clinical and economic impact. Int J Gynecol Cancer. 2023;33:278–84.
- 157. Steingrímsson V, Gíslason GK, Aspelund T, et al. A population-based study on serious inpatient bacterial infections in patients with chronic lymphocytic leukemia and their impact on survival. Eur J Haematol. 2020;105:547–54.
- 158. Assimakopoulos SF, Lazaris V, Papadimitriou-Olivgeris M, et al. Predictors of mortality for KPC-producing *Klebsiella pneumoniae* bloodstream infections in adult neutropenic patients with haematological malignancies. Infect Dis (Lond). 2020;52:446–9.
- 159. Peyrony O, Gerlier C, Barla I, et al. Antibiotic prescribing and outcomes in cancer patients with febrile neutropenia in the emergency department. PLoS ONE. 2020;15:e0229828.
- 160. Avendano EE, Raman G, Chan J, McCann E. Burden of carbapenem non-susceptible infections in high-risk patients: systematic literature review and meta-analysis. Antimicrob Resist Infect Control. 2020;9:193.
- 161. Benanti GE, Brown ART, Shigle TL, et al. Carbapenem versus cefepime or piperacillin-tazobactam for

- empiric treatment of bacteremia due to extendedspectrum-β-lactamase-producing escherichia coli in patients with hematologic malignancy. Antimicrob Agents Chemother. 2019;63:10–1128.
- 162. Sletvold TP, Boland S, Schipmann S, Mahesparan R. Quality indicators for evaluating the 30-day postoperative outcome in pediatric brain tumor surgery: a 10-year single-center study and systematic review of the literature. J Neurosurg Pediatr. 2023;31:109–23.
- 163. Mani S, Aleixo GFP, Rybicki L, Majhail NS, Mossad SB. Secular trends of blood stream infections in allogeneic hematopoietic cell transplant recipients 72 hours prior to death. Transpl Infect Dis. 2021;23:e13631.
- 164. Zajac-Spychala O, Wachowiak J, Gryniewicz-Kwiatkowska O, et al. Prevalence, epidemiology, etiology, and sensitivity of invasive bacterial infections in pediatric patients undergoing oncological treatment: a multicenter nationwide study. Microb Drug Resist. 2021;27:53–63.
- 165. Rashidi A, Gao F, Fredricks DN, et al. Analysis of antibiotic exposure and development of acute graft-vs-host disease following allogeneic hematopoietic cell transplantation. JAMA Netw Open. 2023;6:e2317188.
- 166. Bento ML, de Matos LV, Ribeiro LA, et al. Necrotizing fasciitis of the vulva due to carbapenem-resistant Enterobacteriaceae as a complication of acute myeloid leukemia treatment: a case report. J Med Case Rep. 2022;16:148.
- 167. Giannella M, Bartoletti M, Conti M, Righi E. Carbapenemase-producing Enterobacteriaceae in transplant patients. J Antimicrob Chemother. 2021;76:i27-39.
- 168. Belli LS, Duvoux C, Artzner T, et al. Liver transplantation for patients with acute-on-chronic liver failure (ACLF) in Europe: results of the ELITA/ EF-CLIF collaborative study (ECLIS). J Hepatol. 2021;75:610–22.
- 169. Kieslichova E, Protus M, Nemcova D, Uchytilova E. Single mutidrug resistant enterobacteriacae donorderived infection in four solid organ transplant recipients: a case report. BMC Surg. 2019;19:111.
- 170. Kaufman SS, Avitzur Y, Beath SV, et al. New insights into the indications for intestinal transplantation: consensus in the year 2019. Transplantation. 2020;104:937–46.
- 171. Valéry M, Bourrel A-S, Grignano E, Kernéis S, Contejean A. Successful conservative treatment of necrotizing fasciitis associated with *Aeromonas*

- *veronii* in a patient with acute myeloid leukemia. Med Mal Infect. 2020;50:451–2.
- 172. Coppola PE, Gaibani P, Sartor C, et al. Ceftolozanetazobactam treatment of hypervirulent multidrug resistant *Pseudomonas aeruginosa* infections in neutropenic patients. Microorganisms. 2020;8:2055.
- 173. Chang L, Tsai JS, Huang SJ, Shih CC. Evaluation of infectious complications of the implantable venous access system in a general oncologic population. Am J Infect Control. 2003;31:34–9. https://pubmed.ncbi.nlm.nih.gov/12548255/. Accessed 2025 Jan 27.
- 174. Cantón-Bulnes ML, Hurtado Martínez Á, López-Cerero L, Arenzana Seisdedos Á, Merino-Bohorquez V, Garnacho-Montero J. A case of pan-resistant *Burkholderia cepacia* complex bacteremic pneumonia, after lung transplantation treated with a targeted combination therapy. Transpl Infect Dis. 2019;21:e13034.
- 175. Los-Arcos I, Len O, Martín-Gómez MT, et al. Lung transplantation in two cystic fibrosis patients infected with previously pandrug-resistant *Burkholderia cepacia* complex treated with ceftazidimeavibactam. Infection. 2019;47:289–92.
- 176. Alho AC, Infante J, Carmo E, Raposo J. Osteomyelitis caused by carbapenemase-producing *Klebsiella pneumoniae*: a diagnosis to consider in patients with hematologic malignancies and stem cell transplant recipients. Am J Case Rep. 2019;20:482–8.
- 177. Mallinckrodt L, Huis In 't Veld R, Rosema S, Voss A, Bathoorn E. Review on infection control strategies to minimize outbreaks of the emerging pathogen Elizabethkingia anophelis. Antimicrob Resist Infect Control. 2023;12:97.
- 178. Anghelina M, Naughton MJ, Zhao Q, et al. Patient-driven research: initial results from a prospective health-related quality of life study performed at the request of patients living with hairy cell leukemia. Leuk Res. 2022;120:106919.
- 179. Gottesdiener LS, Satlin MJ. Global impact of antibacterial resistance in patients with hematologic malignancies and hematopoietic cell transplant recipients. Transpl Infect Dis. 2023;25(Suppl 1):e14169.
- 180. San-Juan R, Aguado JM. Mortality due to carbapenemase-producing GNB in transplantation: are risk scores useful? Transpl Infect Dis. 2023;25:e14035.
- 181. European Antimicrobial Resistance Surveillance Network. Surveillance Atlas of Infectious Diseases, EU. 2022. https://atlas.ecdc.europa.eu/public/ index.aspx. Accessed 2024 Mar 12.

- 182. Nellore A, Huprikar S, AST ID Community of Practice. Vancomycin-resistant Enterococcus in solid organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant. 2019;33:e13549.
- 183. Paul M, Carrara E, Retamar P, et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin Microbiol Infect. 2022;28:521–47.
- 184. Righi E, Mutters NT, Guirao X, et al. ESCMID/ EUCIC clinical practice guidelines on perioperative antibiotic prophylaxis in patients colonized by multidrug-resistant Gram-negative bacteria before surgery. Clin Microbiol Infect. 2023;29:463–79.
- 185. Graziano E, Peghin M, Grossi PA. Perioperative antibiotic stewardship in the organ transplant setting. Transpl Infect Dis. 2022;24:e13895.
- 186. Yoon E-J, Jeong SH. MALDI-TOF mass spectrometry technology as a tool for the rapid diagnosis of antimicrobial resistance in bacteria. Antibiotics (Basel). 2021;10:982.
- Vasala A, Hytönen VP, Laitinen OH. Modern tools for rapid diagnostics of antimicrobial resistance. Front Cell Infect Microbiol. 2020;10:308.
- 188. Ha DR, Haste NM, Gluckstein DP. The role of antibiotic stewardship in promoting appropriate antibiotic use. Am J Lifestyle Med. 2017;13:376. https:// pmc.ncbi.nlm.nih.gov/articles/PMC6600622/. Accessed 2025 Jan 27.
- 189. Dominguez F, Blodget E. Multidrug-resistant bacteria in lung transplantation. Curr Opin Organ Transplant. 2020;25:348–50.
- 190. Stohs EJ, Abbas A, Freifeld A. Approach to febrile neutropenia in patients undergoing treatments for hematologic malignancies. Transpl Infect Dis. 2024;26:e14236.
- 191. Baier C, Linke L, Eder M, et al. Incidence, risk factors and healthcare costs of central line-associated nosocomial bloodstream infections in hematologic and oncologic patients. PLoS ONE. 2020;15:e0227772.
- 192. Nelson RE, Hatfield KM, Wolford H, et al. National estimates of healthcare costs associated with multi-drug-resistant bacterial infections among hospitalized patients in the United States. Clin Infect Dis. 2021;72:S17-26.
- 193. Bayoudh F, Giot J-B, Descy J, et al. Oral minocycline as systemic therapy for uncomplicated venous

- access device-related bloodstream infection with coagulase-negative staphylococci after allogeneic hematopoietic cell transplantation. Curr Res Transl Med. 2024;72:103422.
- 194. Snyder M, Pasikhova Y, Baluch A. Evaluating initial empiric therapy for neutropenic fever in vancomycin-resistant enterococcus-colonized patients. Cancer Control. 2021;28:10732748211045592.
- 195. Wozniak TM, Barnsbee L, Lee XJ, Pacella RE. Using the best available data to estimate the cost of antimicrobial resistance: a systematic review. Antimicrob Resist Infect Control. 2019;8:26.
- 196. Milliman. A multi-year look at the cost burden of cancer care. 2017. https://www.milliman.com/en/insight/2017/a-multi-year-look-at-the-cost-burden-of-cancer-care. Accessed 2025 May 7.
- 197. Potnis KC, Di M, Isufi I, et al. Cost-effectiveness of chimeric antigen receptor T-cell therapy in adults with relapsed or refractory follicular lymphoma. Blood Adv. 2023;7:801–10.
- 198. Milliman. Milliman Research Report: 2020 U.S. organ and tissue transplants: cost estimates, discussion, and emerging issues. 2020. https://www.milliman.com/en/insight/2020-us-organ-and-tissue-transplants. Accessed 2025 May 7.
- 199. Nathwani D, Varghese D, Stephens J, Ansari W, Martin S, Charbonneau C. Value of hospital antimicrobial stewardship programs [ASPs]: a systematic review. Antimicrob Resist Infect Control. 2019;8:35.
- 200. Huemer M, Shambat SM, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence—implications for human health and treatment perspectives. EMBO Rep. 2020;21:e51034.
- 201. COVIDSurg Collaborative. Effect of COVID-19 pandemic lockdowns on planned cancer surgery for 15 tumour types in 61 countries: an international, prospective, cohort study. Lancet Oncol. 2021;22:1507–17.
- 202. Patel P, Pillai A. Liver transplantation services during the time of COVID-19. J Clin Transl Hepatol. 2021;9:587–91.
- 203. World Health Organization. WHO global action plan on antimicrobial resistance. 2015. https://iris. who.int/bitstream/handle/10665/193736/97892 41509763_eng.pdf. Accessed 2024 Mar 8.
- 204. Abdul-Mutakabbir JC, Simiyu B. Exploring the intersection of racism, antimicrobial resistance, and vaccine equity. Antimicrobial Stewardship & Healthcare Epidemiology. 2022;2:e134. https://www.cambridge.org/core/journals/antimicrob

ial-stewardship-and-healthcare-epidemiology/artic le/exploring-the-intersection-of-racism-antimicrob ial-resistance-and-vaccine-equity/542E19C7C3 799D7610C9D04ECCCA73B1. Accessed 2025 Jul 5.

205. Abdul-Mutakabbir JC, Hirsch EB, Ko C, et al. A call to action: a need for initiatives that increase equitable access to COVID-19 therapeutics. Lancet Reg Health Am. 2022;11. https://www.thelancet.com/action/showFullText?pii=S2667193X22000801. Accessed 2025 Jul 5.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.